If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3r)^2-45=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| 2=40/(3x-5)(2x-1) | | (1/3)x+4=7 | | D=1.5t+4 | | (3x+4)/7=1 | | 3^x+2=2^1—2 | | 1+27=5-3x | | 3x+5=27-1 | | (4/5)-(3b/5)+b=0 | | 20y+16=30y-44 | | 8+7/10x=6+1/5 | | 3x-5=27-1 | | 7n-(2n-8)=7n+(-2n+8) | | 5r-16=-7r+20 | | 10x-83=87 | | 9x+59=95 | | 6x-21=6×+17 | | 12x+9=91 | | 0.416x+3=0.583x-11 | | 11x+42=75 | | 1/3y^2+1=7 | | 10x-32=142 | | 2x^2+8x-15=9x | | -3x+10=5x-(-8) | | 118-65x-123=5x+35-20x | | 2x-5(x-2)=-4+5x-50 | | 7/10x+2=10 | | 4(-x+3)=4x+12 | | 6s+18=s+2 | | (2x-9)/(3x+8)=0 | | 36=1.2x+15.6 | | 196=x²+144 | | (2x-9)/(3x+18)=0 |